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ABSTRACT

Balancing exploration and exploitation remains a central challenge in reinforcement
learning with verifiable rewards (RLVR) for large language models (LLMs). Cur-
rent RLVR methods often overemphasize exploitation, leading to entropy collapse,
diminished exploratory capacity, and ultimately limited performance gains. Al-
though techniques that increase policy stochasticity can promote exploration, they
frequently fail to escape dominant behavioral modes. This creates a self-reinforcing
loop—repeatedly sampling and rewarding dominant modes—that further erodes
exploration. We introduce Exploration-Enhanced Policy Optimization (EEPO), a
framework that promotes exploration via two-stage rollouts with adaptive unlearn-
ing. In the first stage, the model generates half of the trajectories; it then undergoes
a lightweight unlearning step to temporarily suppress these sampled responses,
forcing the second stage to explore different regions of the output space. This
sample-then-forget mechanism disrupts the self-reinforcing loop and promotes
wider exploration during rollouts. Across five reasoning benchmarks, EEPO out-
performs GRPO, achieving average relative gains of 24.3% on Qwen2.5-3B, 33.0%
on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-Base.

1 INTRODUCTION

The emergence of OpenAI’s o1 (OpenAI) and DeepSeek-R1 (DeepSeek-AI et al., 2025) marks
a significant advance in LLM reasoning. A key driver of this progress is reinforcement learning
with verifiable rewards (RLVR) (DeepSeek-AI et al., 2025), powered by the Group Relative Policy
Optimization (GRPO) (Shao et al., 2024). Nevertheless, RLVR continues to face the classic explo-
ration–exploitation dilemma (Sutton & Barto, 2018) due to the exploitative nature of its objectives.
Specifically, policies tend to over-emphasize exploitation of high-reward trajectories, leading to
entropy collapse and reduced final performance (Yu et al., 2025; Cui et al., 2025).

In this work, we examine entropy collapse on Qwen2.5-3B. We observe that as entropy declines
sharply, in-distribution test accuracy continues to rise, whereas performance on out-of-distribution
benchmarks (e.g., AMC 2023) deteriorates (Figure 2). This suggests reduced exploration drives
overfitting to the training distribution rather than discovering generalizable reasoning patterns. We
hypothesize that, as entropy falls, the policy forms increasingly confident beliefs about solutions,
yielding a response distribution with multiple, imbalanced modes (Figure 3a): several plausible rea-
soning behaviors exist for a given question, but one mode receives more probability mass. If rollouts
predominantly sample this dominant mode and receive positive feedback, the policy further amplifies
it while suppressing alternatives (Figure 3b). This self-reinforcing loop accelerates entropy collapse.
Crucially, it impedes the discovery of alternative—potentially superior—reasoning strategies, causing
local optima and poor generalization.

Recent efforts to improve exploration in RLVR largely fall into two categories: objective-level
modifications and indiscriminate exploration. Approaches such as increasing the sampling temper-

†Corresponding to: Xueting Han and Kam-Fai Wong.
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Figure 1: Comparison of GRPO and EEPO rollout processes. GRPO samples all trajectories from a
fixed rollout model, while EEPO introduces an unlearning step on the rollout model between two
sampling stages to promote exploration of diverse modes.

ature (Ziegler et al., 2019) or adding entropy regularization (Hou et al., 2025) flatten the output
distribution uniformly (Figure 3c). While this increases stochasticity, it fails to shift probability mass
away from dominant behaviors and often yields instability or degraded performance when applied
aggressively (Figure 5). A widely adopted recent approach, DAPO (Yu et al., 2025), increases the
upper clipping threshold to grant low-probability trajectories fewer restrictions during training. Yet
these objective-level tweaks do not break the self-reinforcing loop: during rollouts, the policy remains
confined to dominant modes and fails to explore beyond previously sampled high-probability regions.

To address this problem, we propose Exploration-Enhanced Policy Optimization (EEPO), a method
that promotes exploration by preventing repeated sampling from dominant modes during rollout.
Specifically, EEPO introduces a sample-then-forget mechanism that divides the GRPO rollout into
two stages, as shown in Figure 1: the rollout model first generates half of the trajectories, then
performs a temporary unlearning step to suppress the just-sampled responses. The remaining
trajectories are sampled from this updated model. Unlike objective-level approaches, this mechanism
operates directly within the rollout process, explicitly encouraging subsequent samples to deviate
from dominant behaviors and uncover alternative trajectories—thereby steering exploration toward
broader regions, as illustrated in Figure 4.

To adapt the unlearning intervention to RL exploration, we introduce three design choices that make
it targeted, triggerable, and lightweight. First, to impose stronger penalties on dominant regions,
we replace the standard negative log-likelihood with a complementary loss that penalizes high-
probability tokens more than low-probability ones. Second, to trigger intervention at the onset of
mode collapse, we introduce an entropy-conditioned gating mechanism that activates unlearning only
when exploration deteriorates (i.e., low entropy). Finally, to keep the intervention lightweight and
temporary, we apply a single-step gradient update to the GRPO rollout model—synchronized from
the actor in each iteration and used solely for sampling—thereby decoupling unlearning from policy
optimization and confining its effect to the rollout phase.

To validate our approach, we evaluate EEPO on five challenging mathematical reasoning benchmarks
using three distinct LLMs. The benchmarks include Minerva Math (Lewkowycz et al., 2022),
OlympiadBench (He et al., 2024), and three competition-level datasets: AMC 2023, AIME 2024, and
AIME 2025. EEPO consistently outperforms the baselines, yielding average relative improvements
over GRPO of 24.3% on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-
Base. Furthermore, our analyses show that EEPO achieves superior performance through more
effective exploration while maintaining comparable training time to standard GRPO. The code will
be available at https://github.com/ChanLiang/EEPO.
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2 PRELIMINARIES

We begin by reviewing RL with Verifiable Rewards (RLVR) (DeepSeek-AI et al., 2025) and its
prevalent implementation, Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which
has been widely adopted for training large-scale reasoning models. We then analyze its limitations
related to insufficient exploration and revisit existing solutions attempted to mitigate this issues.

2.1 RL FOR TRAINING LARGE-SCALE REASONING MODELS

RLVR. The success of RLVR relies on reliable reward signals (DeepSeek-AI et al., 2025), typically
provided by a rule-based reward model that delivers precise feedback for tasks in mathematical,
coding, and logical reasoning domains. Consider a mathematical dataset D := {(q, a)}, where q is a
question and a is its ground-truth final answer . The reward depends solely on the correctness of the
final prediction â compared to a, without enforcing constraints on the reasoning process:

r(â, a) = 1[â ≡ a]. (1)

The RLVR objective is often implemented using the large-scale policy optimization method GRPO.
Compared to proximal policy optimization (PPO; Schulman et al., 2017), GRPO improves computa-
tional efficiency by eliminating the need for a separate value function.

GRPO. As illustrated in Figure 1, given a question q and a set of responses, i.e., reasoning paths,
O = {o1, o2, . . . , oG} sampled from the old policy model πold, GRPO directly computes advantages
to optimize the policy model π using the following objective:

JGRPO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
[
ri,t(θ)Âi, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi

]
− βDKL[πθ ∥ πref]. (2)

Here, πref denotes a reference model used to constrain policy updates via a KL divergence penalty. The
score Âi represents the normalized advantage of response oi, computed as Âi =

ri−mean({r1,...,rG})
std({r1,...,rG}) ,

where {r1, . . . , rG} denotes the rewards corresponding to the sampled responses in the group O.

The importance weight ri,t(θ) denotes the probability ratio between current and old policies:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
(3)

This importance sampling ratio is crucial for obtaining unbiased gradient estimates when responses
are sampled from πold rather than the current policy πθ.

2.2 REVISITING THE INSUFFICIENT EXPLORATION PROBLEM
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Figure 2: GRPO training dynamics:
rapid entropy collapse accompanies
rising Testset and decline on AMC23.

We examine the exploration problem through entropy and
performance changes on test and OOD benchmarks to char-
acterize the issue and its implications. Figure 2 presents our
analysis of GRPO’s behavior during training on the MATH
dataset. We observe two interconnected phenomena:

(1) Rapid entropy collapse: Despite incorporating substantial
entropy regularization (λ = 1× 10−3)*, the policy entropy
decreases precipitously within the first few training steps, in-
dicating rapid convergence to deterministic behaviors. This
collapse stems from GRPO’s inherently exploitative objec-
tive function (Equation 2), which prioritizes reward maxi-
mization over exploration.

(2) Deteriorating generalization: As entropy collapses, we
observe a divergent trend: while test accuracy continues to
improve, performance on OOD benchmarks such as AMC 23
declines. This suggests that reduced exploration causes the
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Figure 3: Illustration of exploration challenges in GRPO. (a) Policy distribution showing imbalanced
modes with a dominant peak. (b) Self-reinforcement effect where the dominant mode becomes
increasingly concentrated through positive feedback. (c) Effect of adding randomness (e.g., entropy
regularization) which flattens the distribution but maintains the relative dominance of modes.

model to overfit to the training distribution rather than learn robust reasoning patterns that generalize
to OOD benchmarks.

To explain entropy collapse, we hypothesize that when entropy begins to decline, the policy has
formed partial, uncertain beliefs about the problem. In this regime, its response distribution contains
multiple modes—multiple plausible reasoning traces can coexist for a given question. These modes
are often imbalanced: one dominant mode accumulates a disproportionate share of probability
mass, as illustrated in Figure 3(a). When responses are predominantly sampled from this dominant
mode and receive positive feedback, the policy reinforces it further, amplifying its probability while
suppressing alternative responses. The distribution evolves toward increasing imbalance, as shown
in Figure 3(b). This self-reinforcing dynamic creates a feedback loop that inhibits exploration and
ultimately leads to entropy collapse. This is particularly problematic: once a correct dominant mode
emerges, it can prevent the discovery of alternative, potentially superior strategies, yielding local
optima and limiting generalization to OOD benchmarks.

Current approaches to enhance exploration primarily increase randomness during optimization or
sampling, such as strengthening the entropy term or raising the sampling temperature. These methods
flatten the policy distribution toward a more uniform shape, as depicted in Figure 3(c). However, they
do not disrupt the self-reinforcing loop: the dominant mode remains the most likely to be sampled
even after flattening. This motivates our central question: How can we enable the policy to explore
plausible behaviors beyond the dominant mode during rollout?

3 METHOD

3.1 EXPLORATION-ENHANCED POLICY OPTIMIZATION

To address the self-reinforcing dynamics that lead to entropy collapse, we propose Exploration-
Enhanced Policy Optimization (EEPO), which prevents the rollout model from repeatedly sampling
from dominant modes by unlearning previously sampled responses during rollout generation.

Figure 1 illustrates the key difference between GRPO and EEPO. In GRPO, the rollout model πrollout
(corresponding to πold in Equation 2) samples all responses O = {o1, o2, . . . , oG} from a fixed
distribution, which are then used to compute rewards and advantages for policy optimization. EEPO
introduces a sample-then-forget mechanism that divides the rollout into two stages separated by an
unlearning step:

• Stage 1 sampling: Sample G/2 trajectories {o1, o2, . . . , oG/2} from πrollout.
• Unlearning: Update πrollout to forget the sampled trajectories.
• Stage 2 sampling: Sample the remaining trajectories {oG/2+1, . . . , oG} from the updated model.

After collecting all G trajectories across both stages, we compute their rewards and apply the standard
GRPO objective (Equation 2) to update the policy model. The denominator in Equation 3 uses
the rollout model’s probabilities, ensuring unbiased gradient estimates. Following standard GRPO
practice, the rollout model is synchronized with the policy model at the beginning of each iteration,
making the unlearning effect temporary and confined to the current rollout.

*This value is significantly larger than the 1× 10−4 suggested by SimpleRL (Zeng et al., 2025).
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Figure 4: Unlearning suppresses the dominant
mode and enables exploration of alternative
modes that would otherwise be hard to reach.

This approach decouples policy optimization from
exploration: while the policy model πθ focuses on
reward maximization, the rollout model actively ex-
plores alternative trajectory spaces by suppressing
previously visited regions. As illustrated in Fig-
ure 4, the unlearning step redistributes probability
mass from dominant modes to other plausible re-
gions, encouraging Stage 2 to sample from previ-
ously underexplored areas and effectively breaking
the self-reinforcing loop that causes entropy collapse.

3.2 ADAPTIVE UNLEARNING FOR ROLLOUT EXPLORATION

We now instantiate EEPO with an adaptive unlearning mechanism tailored to rollout-side exploration.
The objective is to temporarily suppress dominant modes in πrollout when exploration begins to
deteriorate. We identify three desiderata: (a) activate at the onset of entropy collapse to avoid
disrupting healthy exploration, (b) penalize dominant regions more than others, and (c) remain
lightweight and temporary. We realize these desiderata with three simple designs.

Entropy-conditioned activation To meet desideratum (a), we activate unlearning only during
low-entropy phases; when entropy is high, no intervention is applied. We implement this via an
entropy-based indicator:

It = I
[
H(m)

t < α
]
, (4)

where α > 0 is a threshold andH(m)

t is the m-step moving average of token-level entropy at step t:

H(m)
t =

1

m

m−1∑
j=0

Ht−j . (5)

Here Ht denotes the token-level entropy at step t (computed from πrollout(· | q, o<t)). A short
horizon (e.g., m = 3) promptly detects low-entropy phases. This indicator multiplicatively gates the
unlearning loss defined below.

Complementary Unlearning Loss To meet desideratum (b), unlearning strength should increase
with prediction probability: strong in dominant regions with high probability mass and weak else-
where. However, maximizing the standard negative log-likelihood (NLL) runs counter to our goal.

LNLL = − log πrollout(ok,t | q, ok,<t), (6)

since it penalizes low-probability predictions more than high-probability ones (the loss goes to 0 as
probability approaches 1). We therefore use a complementary loss that reverses this emphasis:

LComp = log
(
1− πrollout(ok,t | q, ok,<t)

)
, (7)

which imposes stronger penalties on high-probability (dominant) predictions and weaker penalties on
small-probability ones.

To ensure numerical stability as πrollout(ok,t)→ 1, we clip the probability before applying the loss:

pclip = clip(πrollout(ok,t | q, ok,<t), ϵL, 1− ϵR) , (8)

where ϵR > 0 prevents 1− πrollout(ok,t) from becoming too small, and ϵL > 0 avoids unnecessary
penalization of extremely small probabilities. The stabilized unlearn loss is:

Lunlearn = log
(
1− pclip

)
. (9)

Temporary single-step updates To meet desideratum (c), we apply a single-step update to optimize
the unlearning objective and confine its effect to the rollout model within each iteration. Let
ok = (ok,1, . . . , ok,Tk

) denote the k-th trajectory in the stage-1 rollout set O1 = {o1, o2, . . . , oG/2}.
The entropy-conditioned unlearning loss over O1 is:

L(O1) =
1

|O1|
∑

ok∈O1

1

Tk

Tk∑
t=1

It
[
log

(
1− pclip(ok,t)

)]
. (10)
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Algorithm 1: EEPO — Exploration-Enhanced Policy Optimization
Initialize: policy θ0; learning rates ηGRPO, η; group size G; iteration K; entropy threshold α
for k = 0 to K − 1 do

Sample q ∼ D; set θ′ ← θk // sample query and synchronize rollout from policy
Sample {oi}G/2

i=1 ∼ πθ′(· | q) // Stage 1: sample G/2 trajectories
ifH(m)

(πθ′) < α then // single-step adaptive unlearning
θ′ ← θ′ − η∇θ′L({oi}G/2

i=1 )
end if
Sample {oi}Gi=G/2+1 ∼ πθ′(· | q) // Stage 2: sample remaining trajectories
Form O ← {oi}Gi=1 and compute advantages {A(o)}o∈O

θk+1 ← θk + ηGRPO∇θJGRPO(θ
k;O, r) // update policy with GRPO

end for

where pclip denotes the clipped probability and It is the entropy-based activation indicator. We then
perform a single gradient ascend step without momentum to unlearn these trajectories:

θ′ ← θ′ + η∇θ′L(θ′) , (11)

where θ′ parameterizes the rollout model, which is synchronized from the policy model (parameterized
by θ), θ′ ← θ, as in GRPO’s implementation (see Figure 1). Consequently, the unlearning effect is
temporary—confined to the rollout model within the current iteration, without accumulation—and
does not alter the policy parameters or optimization.

Algorithm 1 summarizes the EEPO procedure. It follows GRPO’s structure but incorporates adaptive
unlearning between the two rollout stages. After sampling the first G/2 trajectories (Stage 1), we
check if policy entropy falls below threshold α. If so, we perform a single gradient step to unlearn
these trajectories using the complementary loss, temporarily modifying only the rollout model. We
then sample the remaining G/2 trajectories (Stage 2) from the potentially modified rollout model.
Finally, we update the policy with GRPO’s objective on all G trajectories.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We train on the MATH dataset (Hendrycks et al., 2021a) using 8.5K hard problems
(difficulty levels 3-5) following SimpleRL (Zeng et al., 2025). We evaluate on five mathematical
reasoning benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024),
AMC 2023, AIME 2024. For the stronger Qwen3-8B-Base, we additionally include AIME 2025.

Models. We experiment with three LLMs: Qwen2.5-3B (Yang et al., 2024), Llama-3.2-3B-Instruct
(Team, 2024), and Qwen2.5-7B-Instruct (Yang et al., 2024).

Training Details. We employ a binary reward (+1 for correct answer, 0 otherwise) without format
constraints. All models are trained using VERL (Sheng et al., 2024) with GRPO for 2 epochs, using
batch size 128, learning rate 5 × 10−7, and 8 rollouts per question. For EEPO, we set entropy
threshold α = 0.3 and unlearning rate η = 3× 10−3.

Further details of the experimental setup are provided in Appendix A.

4.2 BASELINES.

We compare EEPO to GRPO and other methods explicitly designed to enhance exploration.
Base/Instruct Model. The base model, or its instruction-tuned variant without additional reasoning-
specific training, serving as performance lower bounds.
GRPO. GRPO applied to the base or instruction-tuned model using standard training settings.
With Increased Entropy Term. This variant encourages exploration by increasing the entropy
weight in the objective function, prompting the actor to generate more diverse outputs.
With Higher Sampling Temperature. Applies a higher sampling temperature during actor’s
decoding process to promote exploration and reduce output determinism.
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With DAPO’s Clip Higher. Incorporates the “clip higher” technique from DAPO to encourage the
selection of rare tokens during training.
With More Rollouts. Expands the exploration space by increasing the number of rollouts per
training step, enabling broader trajectory sampling.

4.3 EXPERIMENTAL RESULTS

Table 1: Performance of EEPO compared to baselines on Qwen2.5-3B across four math benchmarks.
Baseline results report the best performance across different hyperparameter settings (refer to Fig. 5).
Average relative performance improvements (%) over GRPO are highlighted in blue.

Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 Average

Qwen2.5-3B 11.8 7.9 20.0 0.0 9.9

GRPO 22.4 27.9 30.3 3.3 21.0
- Higher Temp. 25.0 25.2 32.5 3.3 21.5
- Increased Ent. 25.0 29.6 37.5 3.3 23.9
- DAPO Clip High. 22.1 26.1 40.0 3.3 22.9
- More rollouts. 21.7 26.8 37.5 6.7 23.2

EEPO 23.5 29.3 45.0 6.7 26.1 (+24.3)

Overall results across three LLMs. To validate the effectiveness of our method across differ-
ent models and scales, we compare EEPO with baselines on three model families—Qwen2.5-3B,
Llama3.2-3B-Instruct, and Qwen3-8B-Base. Tables 1–3 report the results. EEPO consistently out-
performs GRPO and all exploration-enhanced GRPO variants across models and scales. Relative to
standard GRPO, EEPO improves average accuracy by 24.3% on Qwen2.5-3B (21.0% → 26.1%),
33.0% on Llama3.2-3B-Instruct (17.6% → 23.4%), and 10.4% on Qwen3-8B-Base (34.7% → 38.3%).
This pattern indicates that EEPO’s sample-then-forget mechanism yields targeted exploration that
scales from 3B to 8B parameters and transfers across base and instruction-tuned policies, providing a
robust and model-agnostic improvement for mathematical reasoning under RLVR.

Table 2: Performance on Llama3.2-3B-Instruct.

Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 Average

Llama3.2-3B-Instruct 14.3 12.1 20.0 10.0 14.1

GRPO 19.5 17.5 20.0 13.3 17.6
- Higher Temp. 20.6 19.1 22.5 10.0 18.1
- Increased Ent. 20.2 18.1 30.0 10.0 19.6
- DAPO Clip High. 19.1 17.3 25.0 16.7 19.5
- More rollouts. 19.1 17.2 22.5 16.7 18.9

EEPO 20.6 18.1 35.0 20.0 23.4 (+33.0)

Comparison with baselines. We compare EEPO to four exploration strategies, each evaluated at its
best hyperparameter setting (Figure 5). Despite careful tuning, all baselines fail to match EEPO’s
performance. While these strategies can outperform GRPO, gains are modest and require brittle tuning.
Temperature-based exploration exhibits a clear exploration–exploitation trade-off: performance peaks
around 1.2 but degrades sharply at higher values (1.5). We also observe substantially longer training
time at the best temperatures (1.2) due to the much longer reasoning paths caused by inefficient
exploration (Figure 8). Clip-higher and entropy regularization likewise swing between under- and
over-exploration and lag behind EEPO across all models. Increasing the number of rollouts provides
benefits but plateaus quickly while computational cost also grows substantially (Figure 8). In contrast,
EEPO achieves larger gains by enabling targeted exploration within the rollout process.

Generalization to benchmarks. To assess generalization, we evaluate EEPO against baselines on
five diverse math reasoning benchmarks, as shown in Tables 1–3. Our method achieves consistent
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Figure 5: Impact of hyperparameter choices on baselines performance using Qwen2.5-3B. Each
subplot shows the average accuracy across four math benchmarks as a function of (a) temperature,
(b) entropy coefficient, (c) clip higher ratio, and (d) number of rollouts. The orange dashed line
represents the EEPO with fixed hyperparameters.

improvements over GRPO across all benchmarks. Performance continues to improve on harder
and distribution-shifted splits where baselines plateau. On a competition-level benchmark with
Qwen2.5-3B, EEPO reaches 45.0% compared to 30.3% for GRPO. These gains stem from EEPO’s
sustained exploration and superior entropy maintenance (Figures 6 and 7), which prevent the entropy
collapse that leads to overfitting on the training distribution and degraded generalization (Figure 2).

Table 3: Performance on Qwen3-8B-Base.

Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 AIME 25 Average

Qwen3-8B-Base 33.1 36.0 52.5 10 13.3 29.0

GRPO 41.2 45.5 50.0 20.0 16.6 34.7
- Higher Temp. 40.1 44.3 55.0 16.7 20.0 35.22
- Increased Ent. 40.4 42.8 60.0 16.7 20.0 35.9
- DAPO Clip High. 40.1 41.6 55.0 16.7 10.0 32.7
- More rollouts. 40.8 44.0 57.5 16.7 16.7 35.1

EEPO 41.5 44.3 62.5 20.0 23.3 38.3 (+10.4)

5 ANALYSIS

Effectiveness of EEPO: Exploration Enhancement and Quality Preservation. To understand the
effectiveness of EEPO, we compare its training dynamics with GRPO, as shown in Figure 6.
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Figure 6: Training dynamics comparison between EEPO and GRPO. (a) Entropy evolution shows
EEPO maintains higher exploration ability throughout training, with Stage 2 exhibiting increased
entropy compared to Stage 1, demonstrating effective exploration enhancement through ’sample-
then-forget’ mechanism. In contrast, GRPO exhibits monotonic entropy decay. (b) Mean reward
trajectories remain comparable between methods and across EEPO stages. (c) Response length
distributions show similar patterns, indicating preserved generation quality.
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The entropy dynamics in Figure 6(a) reveal how sample-then-forget changes exploration behavior.
While GRPO exhibits continuous entropy collapse indicating that responses samples increasingly
concentrate on high-probability modes, EEPO maintains consistently higher entropy throughout
training. Notably, EEPO’s Stage 2 achieves higher entropy than Stage 1, suggesting that temporary
response suppression successfully forces the model to explore low-density regions that the original
actor rarely visits. This entropy gap demonstrates that our mechanism effectively prevents mode
collapse by strategically sampling from diverse regions of the probability distribution.

Despite this enhanced exploration, generation quality remains preserved. Figure 6(b-c) shows that
both mean rewards and response lengths of EEPO remain stable and comparable to GRPO. These
results validate our hypothesis: temporarily suppressing sampled responses can enhance exploration
by steering the actor away from high-probability regions toward other plausible alternatives, while
preserving the generation capabilities necessary for effective training.

0 25 50 75 100 125
Training Steps

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

(a) Accuracy

8 16 32
k

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Pa
ss

@
k 

(%
)

(b) Pass@k

GRPO
EEPO

Figure 7: Performance comparison of GRPO and EEPO on AMC23 benchmark using Qwen2.5-3B.
(a) Training accuracy dynamics; (b) Pass@k scaling with sampling budgets. EEPO achieves higher
final performance and better scaling with increased computation.

Generalization and Pass@k. Figure 7 shows that EEPO delivers better generalization dynamics and
higher final performance on AMC23 (Figure 7a), with improved Pass@k scaling as the sampling
budget increases (Figure 7b). By mitigating entropy collapse (see Figure 6a) and maintaining higher
policy entropy, EEPO continues to sample non-dominant yet plausible modes, sustaining exploration
throughout training. This stabilized exploration prevents overfitting to the training distribution and
discovers reasoning patterns that generalize to the OOD benchmark AMC23, while also yielding
improvements in Pass@k under larger sampling budgets.

EEPO GRPO Clip0.28 T1.2 Roll12
Methods

0

100

200

300

400

500

Tr
ai

ni
ng

 T
im

e 
(m

in
)

4h 36m 4h 42m 4h 52m

6h 6m

7h 26m

(a) Wall-clock Training Time

0 20 40 60 80 100 120
Training Steps

500

1000

1500

2000

2500

M
ea

n 
R

es
po

ns
e 

Le
ng

th

(b) Response Length During Training

GRPO
T1.2
EEPO
Clip0.28
Roll12

Figure 8: Training efficiency comparison on Qwen3-8B-Base. (a) Wall-clock training time for EEPO
and baseline methods. (b) Mean response length during training for each method. EEPO achieves the
fastest training time while maintaining stable response lengths.

Training Efficiency. We evaluate the computational efficiency of EEPO and baseline methods on
Qwen3-8B-Base using B200 GPUs. As shown in Figure 8(a), EEPO achieves comparable train-
ing time to standard GRPO, demonstrating that our exploration mechanism introduces negligible
computational overhead within the entire framework. Among baseline configurations, higher sam-
pling temperatures significantly slow training by approximately 30%, as these methods generate
substantially longer responses throughout training (Figure 8(b)). Additional rollouts incur the high-
est computational cost due to increased trajectory sampling, while adjusting the clipping ratio has
minimal impact on efficiency. These results demonstrate that EEPO achieves superior performance
through effective exploration while preserving the training efficiency of the original GRPO algorithm.
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6 RELATED WORK

Reinforcement learning with verifiable rewards. Reinforcement learning has shown considerable
promise in improving the capabilities of language models, particularly through reinforcement learning
from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023), which
aligns model outputs with human preferences. Building on this foundation, reinforcement learning
with verifiable rewards (RLVR) (Shao et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025) has
recently attracted growing interest for its ability to incentivize reasoning in LLMs using rule-based,
automatically verifiable reward signals from domains such as mathematics (Cobbe et al., 2021;
Hendrycks et al., 2021b; Chen et al., 2025a), programming (Chen et al., 2021; Codeforces, 2025),
and other STEM-related fields. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025) demonstrates
that RLVR can elicit emergent reasoning behaviors (Gandhi et al., 2025) such as summarization,
backward reasoning, verification, and self-reflection, often manifested through long chain-of-thought
(CoT) outputs. This leads to strong performance across a wide range of reasoning-intensive tasks,
such as mathematics, programming, and other problem-solving domains. The SimpleRL (Zeng
et al., 2025) framework further explores how extended reasoning chains emerge under various RL
training regimes. Despite these advances, RLVR still faces notable challenges in performance and
stability. For example, limited exploration capabilities often lead to early convergence, resulting in
performance plateaus that hinder further progress.

Exploration in RL. Exploration in RL is often promoted through policy stochasticity under
the assumption that randomness broadens coverage of actions and states; however, indiscriminate
randomness is insufficient, as policies tend to collapse toward near-deterministic behavior—“entropy
collapse” (Cui et al., 2025; Yu et al., 2025)—driven by exploitative objectives. Recent efforts largely
fall into two categories: objective-level modifications and indiscriminate exploration. The latter
increases randomness uniformly, for example via ϵ-greedy policies (Sutton & Barto, 2018), softmax
temperature adjustments (Chen et al., 2025b; Hou et al., 2025), or entropy regularization (Hou
et al., 2025); while these methods raise stochasticity, they do not shift probability mass away from
dominant behaviors and often become unstable or ineffective when applied aggressively. On the
objective side, increasing the clipping threshold (e.g., DAPO (Yu et al., 2025)) or concurrent work’s
relaxing rewards with Pass@k (Chen et al., 2025c) admits more low-probability trajectories but
leaves rollout dynamics unchanged, allowing the policy to repeatedly sample high-probability regions
and sustain the self-reinforcing loop (S 2.2) that drives entropy collapse. In contrast, we propose
a active rollout-time intervention that temporarily forgets recently sampled trajectories, explicitly
discouraging revisits and steering the model to explore alternative modes in sequence; this targeted
mechanism disrupts self-reinforcement and remains complementary to objective-level adjustments.

Machine Unlearning for LLMs Machine unlearning for LLMs studies removing the influence of
specific data (e.g., sensitive or copyrighted content) without retraining models from scratch (Liu et al.,
2024). Typical motivations include privacy compliance and mitigating bias or harmful behaviors.
Common approaches involve weight editing (Mitchell et al., 2022) or gradient-based optimization
(Jang et al., 2023) to forget targeted data, and inference-time strategies such as prompt manipulation.
However, prior work primarily focuses on knowledge erasure, whereas EEPO repurposes and tailors
unlearning for RL exploration: during rollout generation, we temporarily unlearn previously sampled
trajectories to prevent the rollout model from repeatedly sampling from dominant modes.

7 CONCLUSION

We introduced EEPO, an exploration-enhanced policy optimization framework that augments the
rollout process with a sample-then-forget mechanism. By temporarily suppressing recently sampled
trajectories during rollouts, EEPO encourages exploration of alternative modes in the output distribu-
tion that would otherwise remain underexplored. Our method transforms indiscriminate stochasticity
into strategic exploration, breaking the self-reinforcing loop that causes insufficient exploration
and entropy collapse. Extensive experiments across three models and five mathematical reasoning
benchmarks demonstrate that EEPO consistently outperforms existing methods while maintaining
comparable training efficiency. These results establish EEPO as a practical and effective approach for
addressing the exploration-exploitation trade-off in RLVR.
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A DETAILED EXPERIMENTAL SETUP

Datasets. We use the MATH dataset (Hendrycks et al., 2021a) for RL training. Following the setup
of SimpleRL (Zeng et al., 2025), we train on the hard data, which contains 8.5K problems with
difficulty levels ranging from 3 to 5. For evaluation, we adopt five challenging mathematical reasoning
benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024), and three
recent competition-level datasets—AMC 2023, AIME 2024, and AIME 2025. For smaller models
(Qwen2.5-3B and LLaMA-3.2-3B-Instruct), evaluation is conducted on the first four benchmarks.
For the stronger Qwen3-8B-Base model, we additionally include AIME 2025.

Models. To demonstrate the generality of our approach, we experiment with three LLMs from
different model families and scales.

• Qwen2.5-3B (Yang et al., 2024): a base model from the Qwen2.5 series, with stronger pretraining
and support for long-context inputs.

• Llama-3.2-3B-Instruct (Team, 2024): an instruction-following model based on Meta’s Llama
architecture, included to evaluate cross-family generalization.

• Qwen3-8B-Base (Yang et al., 2025): a larger base model from the Qwen3 family, used to assess
performance at a larger scale.

Reward Function. We employ a binary reward based on answer correctness: +1 for a correct final
answer and 0 otherwise. We exclude format-based rewards, which can constrain exploration and
degrade performance (Zeng et al., 2025), particularly when training base models.

Implementation Details. All models are trained using the VERL framework (Sheng et al., 2024),
employing the GRPO algorithm. We use a batch size of 128, a mini-batch size of 64, a learning rate
of 5× 10−7, and 8 rollouts, training for 2 epochs. The KL loss and entropy loss coefficient are set
to 1× 10−4 and 1× 10−5, respectively. The maximum response length varies by model: up to 4K
tokens for Qwen2.5-3B, and up to 6K tokens for both LLaMA-3.2-3B-Instruct and Qwen3-8B-Base.
During evaluation, we use greedy decoding to compute pass@1 accuracy , and set the temperature to
1.0 for computing the pass@k metric. All experiments are conducted on compute clusters equipped
with NVIDIA A100 GPUs (80GB) and B200 GPUs.

B THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a large language model (LLM) solely for polishing the writing
style and improving the clarity of the manuscript. The LLM was not used for generating research
ideas, designing experiments, conducting analyses, or deriving results. All scientific contributions,
including the conceptualization, methodology, experiments, and conclusions, were developed entirely
by the authors.
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