Beyond Two-Stage Training: Cooperative SFT and RL
for LLM Reasoning

Liang Chen' Xueting Han?' LiShen® Jing Bai>? Kam-Fai Wong! '
!The Chinese University of Hong Kong ~ 2Microsoft Research
3Shenzhen Campus of Sun Yat-sen University

Abstract

Reinforcement learning (RL) has proven effective in incentivizing the reasoning
abilities of large language models (LLMs), but suffers from severe efficiency
challenges due to its trial-and-error nature. While the common practice employs
supervised fine-tuning (SFT) as a warm-up stage for RL, this decoupled two-stage
approach limits interaction between SFT and RL, thereby constraining overall ef-
fectiveness. This study introduces BRIDGE, a novel method for learning reasoning
models that employs bilevel optimization to facilitate better cooperation between
these training paradigms. By conditioning the SFT objective on the optimal RL
policy, our approach enables SFT to meta-learn how to guide RL’s optimization
process. During training, the lower-level performs RL updates while simultane-
ously receiving SFT supervision, while the upper-level explicitly maximizes the
cooperative gain—the performance advantage of joint SFT-RL training over RL
alone. Empirical evaluations across three LLMs and five reasoning benchmarks
demonstrate that our method consistently outperforms baselines and achieves a
better balance between effectiveness and efficiency.

1 Introduction

The emergence of OpenAl’s ol [27]] and DeepSeek-R1 [11] marks a significant advance in LLM
reasoning capabilities, particularly for challenging tasks such as mathematics [9,|17] and programming
[6,[10]. The key technique driving this progress is large-scale, rule-based RL. However, the inherently
trial-and-error nature of RL renders the training process highly inefficient. An alternative approach
is SFT on curated long chain-of-thought (CoT) datasets, which enables models to rapidly acquire
effective reasoning patterns through imitation learning. While more sample-efficient, SFT typically
exhibits poorer performance and generalization than RL [8]].

In practice, production-scale training pipelines often adopt a multi-stage paradigm, using SFT as a
warm-up phase before applying RL. For example, DeepSeek-R1 [11] undergoes multiple rounds of
SFT and RL to refine reasoning performance. However, our experiments reveal that this approach
fails to fully leverage the strengths of both methods. The fully decoupled two-stage setup can suffer
from catastrophic forgetting and inefficient exploration. This raises a natural question:

Can we design a training framework that enables meaningful synergy between SFT and RL,
ensuring their cooperation yields performance superior to standalone RL?

To explore this possibility, we first propose a simple baseline that alternates between SFT and RL
updates during training. Despite its simplicity, this approach improves both convergence efficiency
and final performance. However, such independent updates cannot guarantee improvements over RL
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alone, as not all SFT updates benefit RL optimization. Building on this insight, we develop BRIDGE,
a cooperative learning framework based on bilevel optimization, where SFT serves as the upper-level
problem and RL as the lower-level problem. By solving this nested structure—with the SFT objective
explicitly conditioned on the RL solution—SFT provides targeted guidance that directly supports
RL’s optimization process.

Specifically, BRIDGE employs an augmented model architecture comprising two learnable compo-
nents: a base model and a LoRA module. The base model is optimized through the lower-level RL
objective, while the LoRA parameters are updated via the upper-level supervised objective. To solve
this bilevel problem, we adopt a first-order, penalty-based relaxation method. The relaxed lower-level
update blends SFT and RL gradients, while the upper-level update explicitly maximizes the coopera-
tive gain—the performance advantage of joint SFT-RL training over RL-only optimization. In this
way, the lower level realizes the cooperation between two objectives, while the upper level ensures
this cooperation yields superior performance.

To validate the effectiveness of our approach, we conduct experiments with three LLMs across
five diverse benchmark datasets covering both standard and competition-level math reasoning tasks.
Results demonstrate that BRIDGE consistently outperforms all baselines—including SFT, RL-zero,
cold-start, and our naive alternating baseline—while requiring less wall-clock training time. These
improvements confirm the benefits of tightly coupling SFT and RL through bilevel optimization
rather than treating them as separate phases.

Our work makes the following contributions:

1. Comparative analysis of reasoning training paradigms. We systematically analyze three
prevalent strategies for training large reasoning models. Our analysis reveals that the lack of
interaction in two-stage pipelines prevents SFT and RL from effectively synergizing and
leads to catastrophic forgetting and inefficient exploration. To mitigate these issues, we
introduce a simple alternating baseline that achieves superior performance.

2. A bilevel optimization framework for integrating SFT and RL. To achieve deeper
cooperation between SFT and RL, we propose BRIDGE, a bilevel optimization method that
formalizes SFT as the upper-level and RL as the lower-level problem. Built on an augmented
model architecture and solved using penalty-based relaxation, BRIDGE explicitly maximizes
the cooperative gain—ensuring joint training outperforms standalone RL.

3. Empirical validation on mathematical reasoning benchmarks. We conduct extensive
experiments with three LLMs across five mathematical reasoning benchmarks. BRIDGE
consistently outperforms five baselines in both accuracy and training efficiency, demonstrat-
ing the practical benefits of tightly integrated SFT-RL optimization.

2 Preliminaries

We begin by reviewing three prevalent fine-tuning strategies for training reasoning models, conduct a
comparative analysis, and discuss limitations of the popular two-stage method. We then introduce a
simple yet effective baseline that improves upon it.

2.1 Fine-tuning Methods for Reasoning Models

We consider a large language model (LLM) parameterized by 6, which defines a conditional distribu-
tion 7 (y|x; @) over output sequences y given input sequences z. This work focuses on three widely
used methodologies for fine-tuning € to enhance the model’s reasoning capabilities.

Supervised Fine-Tuning. In supervised fine-tuning, we assume access to a curated dataset
Dspr = {(x,7,y)} consisting of input prompts x, intermediate reasoning steps r distilled from
larger reasoning models or annotated by human experts, and final answers y. The training objective
maximizes the log-likelihood of generating both the reasoning process and the final answer:

max Jsr1(0) := E(z . )~Dspr ogm (1,4 | ;0)] . )

This approach encourages the model to not only produce correct answers but also to imitate expert
reasoning steps that lead to those answers.



Rule-based Reinforcement Learning. Reinforcement learning with verifiable rewards has gained
increasing attention for its effectiveness in training advanced reasoning models such as DeepSeek-R1
[11]]. Given a dataset Dgy, := {(z,y)} with verifiable outputs—such as mathematics competition
problems—the objective of rule-based RL is formulated as:

max Jre,(60) = E(z y)~Da, (7.5)~r(la:0) [R5, )]
— E@y)~opnr, [Pk (7(- | 230) || Tret (- | 2))]

where 7. is a fixed reference model and R(y,y) is a rule-based reward function that evaluates
prediction correctness using a binary signal:

@)

L ifg=y,

R(9,y) = {_1, otherwise v

Here, y denotes the ground-truth answer and g is the model’s predicted output. The equivalence
relation ¢ = y is typically computed by a domain-specific verifier (e.g., a symbolic math engine).
This objective is commonly solved using policy optimization methods such as Proximal Policy
Optimization (PPO) [28] or Group Relative Policy Optimization (GRPO) [11].

Two-Stage Cold Start. In practice, the common recipe uses SFT as a warm-up stage before applying
RL. This two-stage approach, often referred to as "cold start," ensures that the model first learns to
imitate expert reasoning patterns, providing a strong initialization for subsequent RL training.

0.7 R — Algorithm 1: A Simple Alternating Method
/'~-\._./->ﬁ7.=)‘!=§\"§ 1: Initialize parameters y; datasets Dgp,
06l M /S ® Dgy,; learning rates aspr, ry; total steps T'
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Figure 1: Comparison of Training Methods. 12: end for

2.2 Comparison of Fine-Tuning Methods

We evaluate these methods on mathematics problems at the grade 3-5 level. Figure|[I]illustrates the
evolution of test accuracy during training. We observe that while SFT provides effective initialization
and rapid early convergence for cold-start training, it contributes little to final convergence perfor-
mance. This results in faster initial accuracy improvements, but performance plateaus with minimal
gains in the later stages of the two-phase pipeline. In contrast, RL alone converges more slowly but
eventually achieves comparable final performance.

These results suggest that SFT and RL offer complementary strengths in reasoning tasks: SFT
facilitates rapid initial learning, while RL enables better asymptotic performance. However, the naive
two-stage combination in cold-start training fails to fully exploit these complementary advantages.
We identify two key limitations:

1. Catastrophic forgetting: The two-stage paradigm suffers from catastrophic forgetting—the
model loses valuable SFT-acquired knowledge when transitioning to RL training. This
phenomenon is evident in the response length dynamics during cold-start’s second stage (see
the length dynamics in Figure [3). Response lengths initially drop sharply before gradually
recovering, exhibiting a "dip-then-rise" pattern that indicates the model first forgets some
expert behaviors before slowly exploring new strategies.

2. Inefficient exploration: Despite effective SFT initialization, online RL frequently en-
counters inefficient exploration, particularly on challenging problems where LLMs fail to
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Figure 2: Comparison of two training methods.

generate reward-yielding solutions. LLMs often become trapped in local optima, unable
to make further progress (see the reward dynamics in Figure[3)). Moreover, once the initial
SFT phase concludes, it cannot provide continued guidance for difficult problems.

These limitations motivate integrating SFT and RL training within a unified framework.

2.3 A Simple Alternating Baseline

To investigate the potential synergy between two methods, we design a simple alternating optimization
strategy, as outlined in Algorithm 1. This approach alternates between RL steps, which explore novel
reasoning strategies, and SFT steps, which imitate expert reasoning patterns.

As shown in Figure[T] this alternating strategy converges faster than pure RL and achieves better final
performance than both standalone SFT and two-stage cold-start training. While this integration yields
empirical gains, the current formulation treats SFT and RL as independent update processes with no
guarantee that alternating updates will consistently outperform RL method alone. This limitation
raises a natural question: How can we design training strategies that ensure better cooperation
between SFT and RL leads to guaranteed superior performance compared to standalone RL?

3 Methodology

In this section, we propose BRIDGE, a framework that tightly couples SFT and RL through a
cooperative meta-learning approach. We first introduce the mathematical formulation, then present
the learning algorithm and explanations.

3.1 BRIDGE: Cooperative Meta-Learning for SFT and RL

Given an SFT dataset Dspr and an RL dataset Dy, (defined in Section @, our objective is to
integrate policy optimization (Eq. (2))) with supervised learning (Eq. (I))). We propose the following
cooperative meta-learning formulation:

max Jspr (0" (w), w) := Eg ry)Dgpr l0g 7 (r,y | 25 0 (w), w)]
s.t. 9*(11}) (= arg mgmx {E(x,y)NDRL, (7 9)~m(-|z;0,w) [R(Z}, y)] 4)

(o)~ [Pt (7 | 230, 0) | moes (- | 2))] }-

where 0 denotes the base model parameters and w represents the Low-Rank Adaptation (LoRA)
weights [19]. Together, they form an augmented model with parameters 6 := [0, w].

For clarity, we express Equation (@) in simplified notation:

max Jspr(w, 0" (w)),

&)

s.t. 0% (w) := arg max JrL(0,w).

This formulation exhibits a bilevel optimization structure inspired by the leader-follower game.
SFT acts as the leader (teacher) with access to the RL follower’s (student’s) optimal response
6* (w), enabling it to provide targeted guidance. Conversely, RL optimizes the base parameters
0 given the auxiliary support from SFT through w. During training, these components interact
dynamically, resulting in better cooperation. As illustrated in Figure [2} this structure enables



bidirectional information flow—where RL’s optimal solution becomes visible to SFT—in contrast to
the unidirectional flow of traditional two-stage approaches.

From a meta-learning perspective, BRIDGE implements cooperative framework where, at each
iteration, the upper-level SFT provides an improved initialization for RL exploration, while the lower-
level RL refines this initialization through reward-based optimization. This framework adaptively
extracts the most beneficial information from SFT to enhance RL training, as SFT guidance may not
always be uniformly beneficial.

The single-stage cooperative meta-learning design provides three advantages: (1) it avoids catas-
trophic forgetting of the two-stage pipeline through unified single-stage training; (2) it improves
exploration efficiency via continuous supervised guidance; and (3) it guarantees RL performance
gains by enabling SFT to meta-learn how to guide RL, strategically transferring beneficial knowledge.

Architectural Design Rationale. The augmented model architecture, comprising base model
parameters 6 and LoRA parameters w, is essential for enabling cooperative learning. This separation
allows the upper- and lower-level objectives to co-adapt during training, as illustrated in Figure[2]
Without this architectural separation, our formulation (Equation (@) would collapse to a Model-
Agnostic Meta-Learning (MAML)-style setup [12]], where the lower-level solution reduces to a single
gradient step used to update the upper-level SFT parameters. In this case, RL learning is disabled,
and the cooperation between SFT and RL is lost.

3.2 Learning Algorithm

To solve the bilevel optimization problem in Eq. (), we employ penalty-based methods [30, 32]
to avoid expensive second-order derivative computations. We first reformulate (3)) as a single-level
problem amenable to efficient first-order optimization.

We define the penalty function measuring the sub-optimality of the lower-level problem as:

p(w,@) = In;}XJRL(elvw) - JRL(67w)' (6)
This penalty quantifies the optimality gap: p(w, 8) = 0 if and only if # maximizes Jgy, (-, w).
Given a penalty weight A € (0, 1), we obtain the penalized reformulation:

max L(0,w) := (1 — A)Jspr(6,w) — Ap(w, ). @)

, W

The penalty weight A follows an annealing schedule: starting from a small value to warm-start
training on supervised data, then gradually increasing to enforce the bilevel constraint more strictly.

Since maxg Jrr, (6, w) depends only on w, the gradient with respect to 6 simplifies to:
OFt = 0% + o [(1 — \)VoJsrr (0, w) + AVeJre (0, w)] ®)

For the gradient with respect to w, we invoke Danskin’s theorem. Assuming Jgy, (-, w) satisfies the
required regularity conditions, we have:

Vo max JRL(O,w) = Vo Jr (0% (w), w), )

where 0* (w) = arg maxy Jry, (0, w). In practice, we approximate 6* (w) by taking a single gradient
ascent step with respect to the RL objective:

0 =60+ aVyJry(0,w), (10)

yielding the approximate gradient update for w:
Vo l(0,w) ~ (1 — NV Jspr(0, w) + A [V iz (6, 0) — Ve Ji (6, w)} : 11

The overall algorithm of BRIDGE is presented in Algorithm 2.



Algorithm 2: Learning Algorithm of BRIDGE

1: Initialize augmented parameters 6° = (69, "), and auxiliary parameters §° := 6°;
learning rates «, [3; penalty weight A; number of iterations K

2:fork=0to K —1do

Sample mini-batches Bgpt ~ Dgpr and Brr, ~ DgL

/I Compute base objectives

Compute Jspr (0%, w*), Jr (0%, w*) and Jry, (ék, wk) on Bspr and Bry,

/I Define composite objectives

Jioint (0%, wF) = (1 = X)Jspr (6%, w*) + AJrL (0%, w¥)

9: JGain(wk) = (1 — /\)JSFT(ek, wk) + )\[JRL(Qk, wk) — JRL(9k7 wk)]

10:  // Update base parameters via joint objective

11: @kl gF +aVel]0int(9k,wk)

12:  // Update auxiliary parameters via pure RL

13: O+l gk + OéVéJRL(ék,wk)

14:  // Update LoRA parameters to maximize cooperative gain

15: whl « wk + BV, Jgam (W)

16: end for

3.3 Intuition Behind the Update Rules

Lower-level update: Curriculum-weighted gradient fusion. The update rule for 6 in Eq. (§)
performs a convex combination of SFT and RL gradients. As A increases from O to 1 during training,
the algorithm smoothly transitions from pure imitation learning to pure reinforcement learning.

This adaptive curriculum [[1] reflects the model’s evolving capabilities: early in training, when the
base model lacks strong reasoning abilities, it benefits primarily from imitating expert demonstrations.
As the model develops competence in generating correct solutions, it can increasingly leverage reward
signals through exploration, making RL updates progressively more valuable.

Upper-level update: Maximizing cooperative gain. The update for w in Eq. (TT)) solves the bilevel
problem by finding LoRA parameters w that ensure the RL-optimized model 6*(w) also excels on
the supervised dataset Dgp.

The update in Eq. (TT)) can be interpreted as performing gradient ascent on the following objective:

FOw)=(1—N)  Jspr(0,w)  +A JRL(e,w)—JRL(é,w)} (12)

1 likelihood on expert data

1 cooperative gain: SFT-RL vs RL-only

The first term maintains alignment with expert reasoning patterns, while the second term—the
cooperative advantage—quantifies how much the joint SFT-RL optimization (using #) outperforms
pure RL training (using 9). By maximizing this advantage term, the algorithm explicitly encourages
cooperation between supervised and reinforcement learning, ensuring their combination yields
superior performance compared to RL alone.

4 Experiment

4.1 Settings

Datasets. We use two datasets for RL training: LIMR [24] containing 1.3k unique problems and
MATH [16] with 8.5k problems. For the SFT dataset, we pair queries from LIMR and MATH with
corresponding intermediate reasoning traces extracted from DeepSeekMath-103k [[15], which were
distilled from the DeepSeek-R1 model. We evaluate on five mathematical reasoning benchmarks:
MATHS500 [16], Minerva Math [22], OlympiadBench [14], AIME 2024, and AMC 2023.

Models. To demonstrate the generality of our approach, we experiment with three LLMs: Qwen2.5-
3B [137]], Llama-3.2-3B-Instruct [13], and Qwen2-8B-Base [38]. All models use prompt formats
consistent with SimpleRL [40].



Reward Function. Following SimpleRL [40], we employ a binary reward based on answer correct-
ness: +1 for correct final answers and 0 otherwise. We deliberately exclude format-based rewards,
which can constrain exploration and reduce performance, particularly for base models.

Implementation Details. All models are trained using the VERL framework [33]]. We use a prompt
batch size of 64, mini-batch size of 64, and learning rate of 5 x 10~7. For LoRA, we set both rank
and « to 16. The penalty weight A is set to 0.5. We employ two configurations: (1) for 3B models:
5 rollouts per prompt with 3k maximum tokens; (2) for 8B models: 8 rollouts per prompt with 8k
maximum tokens. During evaluation, we use greedy decoding (temperature 0) with a 5k or 8k token
limit and report pass@1 accuracy. Experiments are conducted on 4 xNVIDIA A100 GPUs (80GB)
for 3B models and 8 x AMD MI300 GPUs (192GB) for 8B models.

4.2 Baselines

We compare BRIDGE against five baselines on the same base architectures:

Base/Instruct Model. The base model or its instruction-tuned variant without additional reasoning-
specific training, serving as performance lower bounds.

Supervised Fine-Tuning (SFT). Models trained exclusively on curated reasoning traces without
reinforcement learning, demonstrating the capabilities and limitations of pure imitation learning.

RL-Zero. Reinforcement learning applied directly to the base model without prior fine-tuning,
evaluating the effectiveness of exploration from scratch.

Cold-Start A two-stage pipeline with SFT pretraining followed by RL fine-tuning, where phases
are fully decoupled with no interaction between objectives.

Naive Alternating. We introduce this baseline as an ablation study, which alternates between
SFT and RL updates without the cooperative optimization. Despite being simple and effective, this
straightforward independent alternating optimization approach allows us to isolate the additional
gains from BRIDGE’s cooperative mechanism.

4.3 Experimental Results

MATH Minerva Olympiad

Method 500 Math Bench AIME24 AMC23 Average
Base 324 11.8 7.9 0.0 20.0 14.4
SFT 534 18.8 21.5 33 42.5 27.9
RL-zero 64.4 26.5 27.0 33 40.0 32.2
Cold-start 66.0 243 26.8 9.0 35.0 32.2
Naive Alter.  65.2 25.3 27.1 6.7 42.5 33.4 (+3.7)
BRIDGE 66.2 23.9 28.9 13.3 47.5 36.0 (+11.8)

Table 1: Performance of BRIDGE compared to baseline methods across five math benchmarks.
Average performance improvements (%) over Cold-start are highlighted in blue.

Generalization to benchmarks. We evaluate the generalization ability of BRIDGE across five
diverse mathematical reasoning benchmarks. As shown in Table[T} BRIDGE consistently outperforms
baseline methods, achieving consistently accuracy improvements on Minerva Math, Olympiad Bench,
AIME24, and AMC23. Overall, BRIDGE yields an average improvement of 11.8% over RL-zero
and Cold-start, highlighting its effectiveness and robustness across tasks of varying difficulty.

Baseline methods tend to yield larger improvements on relatively easier benchmarks but generalize
poorly to more complex reasoning tasks. For example, the Cold-start method underperforms RL-zero
on Minerva Math, Olympiad Bench, and AMC23, potentially due to overfitting during the prior SFT
phase. While the Naive Alternative partially mitigates this issue—maintaining performance on harder
benchmarks—its gains remain limited. In contrast, BRIDGE achieves consistent and substantial
improvements on the more challenging benchmarks. These results underscore BRIDGE’s superior
generalizability in handling complex mathematical reasoning.



MATH Minerva Olympiad

Method 500 Math Bench AIME24 AMC23 Average
Instruct 38.0 14.3 13.0 13.3 25.0 20.7
SFT 384 10.3 11.9 27.5 33 18.3
RL-zero 48.6 15.1 17.8 10.0 17.5 21.8
Cold-start 45.0 11.8 12.0 33 22.5 18.9
Naive Alter.  49.8 17.6 17.2 20.0 0.0 20.9 (+10.6%)
BRIDGE 51.8 15.1 19.3 10.0 27.5 24.7 (+30.7 %)

Table 2: Performance on Llama3.2-3B-Instruct.
MATH Minerva Olympiad

Method 500 Math Bench AIME24 AMC23 Average
Base 55.4 24.3 22.5 33 27.5 26.6
SFT 67.8 32.0 29.8 45.0 13.3 37.6
RL-zero 76.2 36.0 42.4 10.0 50.0 42.9
Cold-start 80.4 38.2 39.6 16.6 52.5 45.5
Naive Alter.  78.2 37.5 40.6 65.0 13.3 46.9 (+3.1%)
BRIDGE 79.0 39.7 44.0 16.7 70.0 49.9 (+9.7%)

Table 3: Performance on Qwen3-8B-Base.

Effectiveness across LLMs. We expand our experiments to additional LLMs: Qwen3-8B-Base and
Llama3.2-3B-Instruct. As shown in Tables [3]and 2] BRIDGE consistently outperforms all baselines
across diverse architectures. On Qwen3-8B-Base, BRIDGE achieves 16.3% improvement over
RL-zero and 9.7% over Cold-start. On Llama3.2-3B-Instruct, gains are more pronounced with 13.5%
over RL-zero and 30.9% over Cold-start. These results demonstrate BRIDGE’s robust effectiveness
across different model families and training configurations.

Performance on varied fine-tuning epochs. We assess BRIDGE's effectiveness across different
fine-tuning epochs on Qwen2.5-3B using average performance across epochs as the metric. As shown
in Table ] BRIDGE achieves the highest average performance.

Among the baselines, Cold-start yields the second-best trade-off. However, its performance becomes
unstable as training progresses, eventually converging to the same final result as RL-zero. In
contrast, BRIDGE demonstrates consistent improvement throughout training. Overall, nearly all
hybrid baselines outperform RL-zero in terms of early-stage efficiency, highlighting the advantage of
integrating supervised fine-tuning and reinforcement learning paradigms.

Average Performance

Method Average
Epoch=1 Epoch=3 Epoch=6
SFT 24.1 26.5 27.9 26.2
RL-zero 14.8 17.5 322 21.5
Cold-start 334 28.5 32.2 314
Naive Alter. 13.0 30.8 334 25.7
BRIDGE 323 333 36.4 34.0

Table 4: Performance progression across training epochs for different methods.

Training Dynamics Analysis. We analyze the dynamics of mean reward and response length during
training for BRIDGE, Cold-start, and RL-Zero on Qwen2.5-3B. As shown in Figure E], the three
methods exhibit markedly different patterns. RL-Zero suffers from online RL’s sample inefficiency,
showing slow growth in both response length and reward. Cold-start begins with extremely long
responses due to SFT warm-up, causing slow initial training, followed by a sharp decline and gradual
recovery. This "dip-then-rise" pattern indicates the model initially loses expert behavior acquired
during SFT, then slowly explores new strategies—a mismatch that contributes to training inefficiency.
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Figure 3: Training dynamics of mean reward and response length for BRIDGE, Cold-start, and
RL-zero on Qwen2.5-3B.

Despite starting with higher rewards, Cold-start’s second-phase RL lacks proper guidance, resulting
in convergence similar to RL-Zero. In contrast, BRIDGE benefits from continuous SFT guidance
throughout training, enabling rapid reward growth that surpasses Cold-start and achieving superior
convergence. These dynamics demonstrate that BRIDGE’s bilevel optimization enables more efficient
policy learning through sustained and targeted expert guidance.

Cost-Benefit Analysis. We evaluated the cost-performance trade-offs by measuring wall-clock
training time, average GPU memory usage per device, and final convergence performance across two
model scales: Qwen2.5-3B (4xA100-80GB) and Qwen3-8B-Base (8xMI300-192GB). As shown
in Table 5] Cold-start requires nearly 2x the training time of RL-zero, despite the short SFT stage.
This overhead stems from long sequence lengths induced by the SFT stage (see Figure[3). BRIDGE
achieved 44% and 14% time savings compared to Cold-start for the 3B and 8B models, respectively.
Despite a modest 11% increase in memory usage for the larger model, BRIDGE consistently delivered
superior performance improvements (13% for 3B and 9.7% for 8B models), demonstrating favorable
cost-benefit trade-offs for practical deployment.

Metric \ Qwen 2.5-3B \ Qwen 3-8B-Base

| RL-zero Cold-start BRIDGE | RL-zero Cold-start BRIDGE
Time (hr) 6.1 12.3 6.9 38.5 39.1 33.5
Mem. (GB) 52.2 45.9 59.3 50.7 60.8 67.4
Acc. (%) 32.2 32.2 36.4 42.9 45.5 49.9

Table 5: Cost-performance analysis on Qwen2.5-3B and Qwen3-8B-Base

5 Related Work

Reinforcement Learning for Large Reasoning Models. Recent progress has highlighted the
critical role of reinforcement learning in enhancing the reasoning capabilities of large language
models [27, [11]. DeepSeek-R1 introduced a simple yet effective rule-based reward model and
demonstrated further gains through multiple rounds of supervised distillation and RL training.
LIMR [24] showed that complex reasoning behaviors can emerge from as few as one thousand
curated examples from the MATH dataset [17].

In parallel, substantial advances have been made in training recipes for large reasoning models. Chu
et al. [8] compare SFT and RL for reasoning tasks and find that RL generalizes significantly better,
whereas SFT is prone to overfitting. SimpleRL [40] observes that fine-tuning on short-CoT datasets
can harm reasoning ability, while He et al. [15] find that fine-tuning on long-CoT distilled data can
improve the reasoning performance of smaller models—especially when used as a warm-up stage
before RL training. In practice, two-stage pipelines that combine SFT and RL are commonly used
to balance stability and performance. However, existing approaches often rely solely on supervised
fine-tuning, which tends to generalize poorly, or on pure RL, which suffers from sample inefficiency
and unstable optimization. In this work, we propose the first unified training framework that enables
explicit interaction between SFT and RL via a bilevel optimization formulation. This approach offers
a new perspective on integrating imitation and exploration for large reasoning models.



Bilevel Optimization in LLMs. Bilevel optimization (BLO) is a classical framework for modeling
hierarchical learning problems, originating from Stackelberg leader-follower games. Two major
classes of methods have been developed to solve BLO problems. Implicit gradient methods [18, 20,
29, 36]] compute gradients through the lower-level problem using second-order derivatives. While
theoretically robust, these methods are often computationally expensive and memory-prohibitive
when applied to large-scale models such as LLMs. In contrast, penalty-based relaxation methods
[30, 21}, 31} 26]] approximate the BLO formulation using only first-order gradients, making them
substantially more scalable and thus better suited for LLM applications. Recent work has explored the
use of bilevel optimization in LLMs for tasks such as data selection [25} 32]], inverse reinforcement
learning [23]], and meta-learning [7, 34]]. To the best of our knowledge, our work is the first to cast
reasoning-oriented LLM training as bilevel optimization, introducing a novel augmented model
architecture for modeling and solving this problem. This provides a principled framework for
integrating supervised and reinforcement learning, where SFT actively assists RL optimization rather
than merely serving as warmup.

6 Conclusion

This work investigates how to effectively integrate supervised fine-tuning and reinforcement learning
to improve the reasoning capabilities of LLMs. We begin by analyzing three widely used training
paradigms and identify a key limitation of existing multi-stage pipelines: the lack of interaction
between SFT and RL. To address this, we propose a simple alternating baseline and further introduce
BRIDGE, a bilevel optimization framework that models SFT as the upper-level objective and RL as
the lower-level objective. By employing a penalty-based relaxation, BRIDGE explicitly encourages
joint training to outperform standalone RL, fostering tighter cooperation between the two learning
paradigms. Empirical results on five mathematical reasoning benchmarks demonstrate that our
method consistently outperforms strong baselines in both accuracy and training efficiency. These
findings underscore the potential of bilevel optimization as a unifying framework for combining
supervised and reward-driven learning in complex reasoning tasks.

Limitations

Although the BRIDGE framework effectively integrates the two-stage reasoning training process,
several limitations remain. First, the reasoning traces in the SFT dataset are distilled from large-scale
reasoning models, which may contain noise. Future work could leverage automated detection tools
[35. 2] to identify and filter out such issues, potentially enhancing performance. Second, some studies
[41} 39] have shown that the model’s reasoning capabilities can lack robustness. Incorporating robust
fine-tuning techniques [3. 15, 4] may help mitigate this limitation. Finally, the framework is evaluated
in limited application scenarios. Future research could explore extending the BRIDGE framework
to larger-scale models and broader domains, including program synthesis, theorem proving, and
scientific reasoning.
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